- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
Using the property of determinants and without expanding, Prove that
$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$
Option A
Option B
Option C
Option D
Solution
$\left|\begin{array}{ccc}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=\left|\begin{array}{ccc}x & a & x \\ y & b & y \\ z & c & z\end{array}\right|+\left|\begin{array}{ccc}x & a & a \\ y & b & b \\ z & c & c\end{array}\right|$
Clearly, the two determinants have two identical columns. Thus,
$=0+0=0$
Standard 12
Mathematics