3 and 4 .Determinants and Matrices
easy

Using the property of determinants and without expanding, Prove that 

$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$

Option A
Option B
Option C
Option D

Solution

$\left|\begin{array}{ccc}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=\left|\begin{array}{ccc}x & a & x \\ y & b & y \\ z & c & z\end{array}\right|+\left|\begin{array}{ccc}x & a & a \\ y & b & b \\ z & c & c\end{array}\right|$

Clearly, the two determinants have two identical columns. Thus,

$=0+0=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.